Hive Community

All posts

Deep, practical engineering stories — browse everything.

Caching layers concept illustration

Caching for Frontend Performance: Practical Patterns

This note condenses the DEV article “Mastering Frontend Performance: Harnessing the Power of Caching” into actionable steps for modern apps. Why cache Reduce network and CPU cost for repeated data/computation. Improve perceived speed and resilience to flaky networks. Keep UIs responsive under load. Layers to combine HTTP caching: set Cache-Control, ETag, Last-Modified, stale-while-revalidate for API/static responses; prefer immutable, versioned assets. Client memoization: cache expensive computations/render data (useMemo, useCallback, memoized selectors). Data caching: use React Query/SWR/Apollo to dedupe fetches, retry, refetch on focus. Service worker (when appropriate): offline/near-edge caching for shell + static assets. React hook hygiene Memoize derived data: useMemo(() => heavyCompute(input), [input]). Memoize callbacks passed to children to avoid re-renders: useCallback(fn, deps). Keep props stable; avoid recreating objects/functions each render. HTTP cache playbook Static assets: long max-age + immutable on versioned filenames. APIs: choose strategy per route: idempotent reads: max-age/stale-while-revalidate with ETag. personalized or sensitive data: no-store. list endpoints: shorter max-age + revalidation. Prefer CDN edge caching; compress (Brotli) and serve modern formats (AVIF/WebP). UI checks No spinner longer than a couple of seconds; use skeletons and optimistic updates where safe. Avoid layout shift when cached data arrives—reserve space. Track Core Web Vitals (LCP/INP/CLS) and hit-rate for key caches. Quick checklist Versioned static assets + long-lived caching headers. API cache policy per route with ETag/stale-while-revalidate. React memoization for heavy work and stable callbacks. Data-layer cache (React Query/SWR) with sensible stale times + retries. RUM/CI dashboards watching Web Vitals and cache hit rates. Takeaway: Combine HTTP caching, client memoization, and data-layer caches to ship faster pages and keep them fast under real traffic.

Read

Hardening gRPC Services in Go

Deadlines & retries Require client deadlines; enforce server-side context with grpc.DeadlineExceeded handling. Configure retry/backoff on idempotent calls; avoid retry storms with jitter + max attempts. Interceptors Unary/stream interceptors for auth, metrics (Prometheus), logging, and panic recovery. Use per-RPC circuit breakers and rate limits for critical dependencies. TLS & auth Enable TLS everywhere; prefer mTLS for internal services. Rotate certs automatically; watch expiry metrics. Add authz checks in interceptors; propagate identity via metadata. Resource protection Limit concurrent streams and max message sizes. Bounded worker pools for handlers performing heavy work. Tune keepalive to detect dead peers without flapping. Observability Metrics: latency, error codes, message sizes, active streams, retries. Traces: annotate methods, peer info, attempt counts; sample smartly. Logs: structured fields for method, code, duration, peer. Checklist Deadlines required; retries only for idempotent calls with backoff. Interceptors for auth/metrics/logging/recovery. TLS/mTLS enabled; cert rotation automated. Concurrency and message limits set; keepalive tuned.

Read

Java Class Initialization Order: Understanding the Real Sequence

Understanding Java class initialization order is crucial for avoiding subtle bugs. Here’s the real initialization sequence and common pitfalls. Initialization Order Static Fields and Blocks public class Example { // 1. Static fields initialized first private static int staticField = initializeStatic(); // 2. Static blocks executed in order static { System.out.println("Static block 1"); } static { System.out.println("Static block 2"); } private static int initializeStatic() { System.out.println("Static field initialization"); return 1; } } Instance Fields and Constructors public class Example { // 3. Instance fields initialized private int instanceField = initializeInstance(); // 4. Instance initialization blocks { System.out.println("Instance block"); } // 5. Constructor executed last public Example() { System.out.println("Constructor"); } private int initializeInstance() { System.out.println("Instance field initialization"); return 1; } } Complete Initialization Sequence public class InitializationDemo { // Step 1: Static fields private static String staticField = "Static field"; // Step 2: Static blocks (in order) static { System.out.println("Static block 1"); } static { System.out.println("Static block 2"); } // Step 3: Instance fields private String instanceField = "Instance field"; // Step 4: Instance blocks { System.out.println("Instance block"); } // Step 5: Constructor public InitializationDemo() { System.out.println("Constructor"); } } Common Pitfalls 1. Forward References // Bad: Forward reference public class BadExample { private int value = getValue(); // Error: forward reference private int multiplier = 10; private int getValue() { return multiplier * 2; // multiplier might not be initialized } } // Good: Initialize in correct order public class GoodExample { private int multiplier = 10; private int value = getValue(); private int getValue() { return multiplier * 2; } } 2. Static vs Instance Initialization public class ConfusingExample { private static int staticCounter = 0; private int instanceCounter = 0; static { staticCounter++; // Cannot access instanceCounter here! } { instanceCounter++; staticCounter++; // Can access static } } 3. Inheritance Initialization class Parent { static { System.out.println("Parent static block"); } { System.out.println("Parent instance block"); } public Parent() { System.out.println("Parent constructor"); } } class Child extends Parent { static { System.out.println("Child static block"); } { System.out.println("Child instance block"); } public Child() { System.out.println("Child constructor"); } } // Output order: // Parent static block // Child static block // Parent instance block // Parent constructor // Child instance block // Child constructor Best Practices Initialize fields in logical order Avoid forward references Keep initialization blocks simple Use constructors for complex initialization Document initialization dependencies Conclusion Understanding initialization order helps you: ...

Read

Common Failure Modes in Containerized Systems and Prevention

Containerized systems have unique failure modes. Here’s how to identify and prevent common issues. 1. Resource Exhaustion Memory Limits # docker-compose.yml services: app: deploy: resources: limits: memory: 512M reservations: memory: 256M CPU Throttling services: app: deploy: resources: limits: cpus: '1.0' 2. Container Restart Loops Health Checks # Dockerfile HEALTHCHECK --interval=30s --timeout=3s --start-period=40s \ CMD curl -f http://localhost:8080/health || exit 1 Restart Policies services: app: restart: unless-stopped # Options: no, always, on-failure, unless-stopped 3. Network Issues Port Conflicts services: app: ports: - "8080:8080" # host:container DNS Resolution services: app: dns: - 8.8.8.8 - 8.8.4.4 4. Volume Mount Problems Permission Issues # Fix permissions RUN chown -R appuser:appuser /app USER appuser Volume Mounts services: app: volumes: - ./data:/app/data:ro # Read-only - cache:/app/cache 5. Image Layer Caching Optimize Dockerfile # Bad: Changes invalidate cache COPY . . RUN npm install # Good: Layer caching COPY package*.json ./ RUN npm install COPY . . 6. Log Management Log Rotation services: app: logging: driver: "json-file" options: max-size: "10m" max-file: "3" 7. Security Issues Non-Root User RUN useradd -m appuser USER appuser Secrets Management services: app: secrets: - db_password environment: DB_PASSWORD_FILE: /run/secrets/db_password Prevention Strategies Set resource limits Implement health checks Use proper restart policies Monitor container metrics Test failure scenarios Use orchestration tools (Kubernetes, Docker Swarm) Conclusion Prevent container failures by: ...

Read
CI/CD testing strategies illustration

Testing Strategies for CI/CD: Balancing Speed, Depth, and Sanity

Effective testing in CI/CD pipelines requires balancing speed, coverage, and reliability. This guide covers strategies to optimize your testing approach for continuous integration and deployment. Testing pyramid for CI/CD The testing pyramid applies to CI/CD with some modifications: /\ / \ E2E Tests (few, slow, expensive) /____\ / \ Integration Tests (some, moderate) /________\ / \ Unit Tests (many, fast, cheap) /____________\ CI/CD testing layers Unit tests: Fast, run on every commit Integration tests: Moderate speed, run on PRs E2E tests: Slow, run on main branch or scheduled Performance tests: Run periodically or on release candidates Pipeline testing strategy Stage 1: Pre-commit (local) Run fast checks before committing: ...

Read

Java Virtual Threads (Loom) for IO-heavy Services

When it shines IO-heavy workloads with many concurrent requests. Simplifies thread-per-request code without callback hell. Great for blocking JDBC (with drivers that release threads), HTTP clients, and file IO. Caveats Avoid blocking operations that pin VTs (synchronized blocks, some native calls). Watch libraries that block on locks; prefer async-friendly drivers when possible. Pinning shows as carrier thread exhaustion; monitor. Usage Executors: Executors.newVirtualThreadPerTaskExecutor(). For servers (e.g., Spring): set spring.threads.virtual.enabled=true (Spring Boot 3.2+). Keep per-request timeouts; use structured concurrency where possible. Observability Metrics: carrier thread pool usage, VT creation rate, blocked/pinned threads. Profiling: use JDK Flight Recorder; check for pinning events. Checklist Dependencies vetted for blocking/pinning. Timeouts on all IO; circuit breakers still apply. Dashboards for carrier thread utilization and pinning. Load test before prod; compare throughput/latency vs platform threads.

Read

Hibernate: Fixing 'Object References an Unsaved Transient Instance' Error

The “object references an unsaved transient instance” error is common in Hibernate. Here’s how to fix it. Understanding the Error This error occurs when you try to save an entity that references another entity that hasn’t been persisted yet. // Error scenario User user = new User(); // Transient (not saved) Post post = new Post(); post.setUser(user); // References unsaved user postRepository.save(post); // Error! Solutions 1. Save Parent First // Save user first User user = new User(); user = userRepository.save(user); // Now managed Post post = new Post(); post.setUser(user); postRepository.save(post); // Works! 2. Use Cascade Types @Entity public class Post { @ManyToOne(cascade = CascadeType.PERSIST) private User user; } // Now saving post will save user too Post post = new Post(); post.setUser(new User()); postRepository.save(post); // Works! 3. Use @OneToMany with Cascade @Entity public class User { @OneToMany(mappedBy = "user", cascade = CascadeType.ALL) private List<Post> posts; } User user = new User(); Post post = new Post(); user.getPosts().add(post); post.setUser(user); userRepository.save(user); // Saves both Common Patterns Bidirectional Relationships @Entity public class User { @OneToMany(mappedBy = "user", cascade = CascadeType.ALL) private List<Post> posts = new ArrayList<>(); } @Entity public class Post { @ManyToOne @JoinColumn(name = "user_id") private User user; // Helper method public void setUser(User user) { this.user = user; if (user != null && !user.getPosts().contains(this)) { user.getPosts().add(this); } } } Best Practices Save parent entities first Use appropriate cascade types Maintain bidirectional relationships Use helper methods for relationships Handle null references Conclusion Fix Hibernate transient instance errors by: ...

Read

Java Collections Framework: Complete Guide with Examples

The Java Collections Framework is essential for every Java developer. Here’s a comprehensive guide. Collection Hierarchy Collection ├── List │ ├── ArrayList │ ├── LinkedList │ └── Vector ├── Set │ ├── HashSet │ ├── LinkedHashSet │ └── TreeSet └── Queue ├── PriorityQueue └── Deque └── ArrayDeque Lists ArrayList List<String> list = new ArrayList<>(); list.add("Java"); list.add("Python"); list.get(0); // "Java" list.remove(0); LinkedList List<String> list = new LinkedList<>(); list.add("First"); list.add("Last"); // Better for frequent insertions/deletions Sets HashSet Set<String> set = new HashSet<>(); set.add("Java"); set.add("Java"); // Duplicate ignored set.contains("Java"); // true TreeSet Set<String> set = new TreeSet<>(); set.add("Zebra"); set.add("Apple"); // Automatically sorted: [Apple, Zebra] Maps Map<String, Integer> map = new HashMap<>(); map.put("Java", 1); map.put("Python", 2); map.get("Java"); // 1 map.containsKey("Java"); // true Best Practices Use ArrayList for random access Use LinkedList for frequent insertions Use HashSet for unique elements Use TreeSet for sorted unique elements Use HashMap for key-value pairs Conclusion Master Java Collections to write efficient code! 📚

Read

PHP-FPM Tuning Guide

Process manager modes pm=dynamic for most apps; pm=static only when workload is predictable and memory bounded. Key knobs: pm.max_children, pm.start_servers, pm.min_spare_servers, pm.max_spare_servers. Size max_children = (available RAM - OS/webserver/DB) / avg worker RSS. Opcache Enable: opcache.enable=1, opcache.enable_cli=0, opcache.memory_consumption sized for codebase, opcache.interned_strings_buffer, opcache.max_accelerated_files. Avoid opcache.revalidate_freq=0 in prod unless you control deploy restarts; prefer deploy-triggered reloads. Timeouts & queues Keep request_terminate_timeout sane (e.g., 30s-60s); long requests move to queues. Use pm.max_requests to recycle leaky workers (e.g., 500-2000). Watch slowlog to catch blocking I/O or heavy CPU. Observability Export status_path and scrape: active/idle/slow requests, max children reached. Correlate with Nginx/Apache logs for upstream latency and 502/504s. Alert on max children reached, slowlog entries, and rising worker RSS. Checklist Pool sizing validated under load test. Opcache enabled and sized; reload on deploy. Timeouts/queues tuned; slowlog on. Status endpoint protected and scraped.

Read