Pandas provides powerful tools for joining DataFrames. Here’s a comprehensive guide.
Merge Types
Inner Join
import pandas as pd
df1 = pd.DataFrame({'key': ['A', 'B'], 'value1': [1, 2]})
df2 = pd.DataFrame({'key': ['B', 'C'], 'value2': [3, 4]})
result = pd.merge(df1, df2, on='key', how='inner')
Left Join
result = pd.merge(df1, df2, on='key', how='left')
Right Join
result = pd.merge(df1, df2, on='key', how='right')
Outer Join
result = pd.merge(df1, df2, on='key', how='outer')
Multiple Keys
result = pd.merge(df1, df2, on=['key1', 'key2'])
Best Practices
- Choose the right join type
- Handle missing values
- Use appropriate keys
- Check for duplicates
- Optimize for large datasets
Conclusion
Master Pandas joins for efficient data manipulation! π